Endogenous firing patterns of murine spiral ganglion neurons.
نویسندگان
چکیده
Current-clamp recordings with the use of the whole cell configuration of the patch-clamp technique were made from postnatal mouse spiral ganglion neurons in vitro. Cultures contained neurons that displayed monopolar, bipolar, and pseudomonopolar morphologies. Additionally, a class of neurons having exceptionally large somata was observed. Frequency histograms of the maximum number of action potentials fired from 240-ms step depolarizations showed that neurons could be classified as either slowly adapting or rapidly adapting. Most neurons (85%) were in the rapidly adapting category (58 of 68 recordings). Measurements of elementary properties were used to define the endogenous firing characteristics of both the neuron classes. Action potential number varied with step and holding potential, spike amplitude decayed during prolonged depolarizations, and spike frequency adaptation was observed in both rapidly and slowly adapting neurons. The apparent input resistance, spike amplitude decrement, and instantaneous firing frequency differed significantly between rapidly and slow adapting neurons. Inward rectification was evaluated in response to hyperpolarizing contrast current injections. Present in both electrophysiological classes, its magnitude was graded from neuron to neuron, reflecting differences in number, type, and/or voltage dependence of the underlying channels. These data suggest that spiral ganglion neurons possess intrinsic firing properties that regulate action potential number and timing, features that may be crucial to signal coding in the auditory periphery.
منابع مشابه
Complex regulation of spiral ganglion neuron firing patterns by neurotrophin-3.
Auditory information is conveyed into the CNS via the spiral ganglion neurons, cells that possess distinctive electrophysiological properties that vary according to their cochlear innervation. Neurons from the base of the cochlea fire action potentials with shorter latencies and durations with more rapid accommodation than apical neurons (Adamson et al., 2002b). Interestingly, these features ar...
متن کاملTherapeutic potential of cell therapy in the repair of hair cells and spiral ganglion neurons: review article
The mammalian cochlea is a highly complex structure which contains several cells, including sensory receptor or hair cells. The main function of the cochlear hair cells is to convert the mechanical vibrations of the sound into electrical signals, then these signals travel to the brain along the auditory nerve. Auditory hair cells in some amphibians, reptiles, fish, and birds can regenerate or r...
متن کاملOpposite actions of brain-derived neurotrophic factor and neurotrophin-3 on firing features and ion channel composition of murine spiral ganglion neurons.
It is now well established that sensory neurons and receptors display characteristic morphological and electrophysiological properties tailored to their functions. This is especially evident in the auditory system, where cells are arranged tonotopically and are highly specialized for precise coding of frequency- and timing-dependent auditory information. Less well understood, however, are the m...
متن کاملFiring patterns of type II spiral ganglion neurons in vitro.
Type I and type II spiral ganglion neurons convey auditory information from the sensory receptors in the cochlea to the CNS. The numerous type I neurons have been extensively characterized, but the small population of type II neurons with their unmyelinated axons are undetectable with most recording methods. Despite the paucity of information about the type II neurons, it is clear that they mus...
متن کاملUnmasking of spiral ganglion neuron firing dynamics by membrane potential and neurotrophin-3.
Type I spiral ganglion neurons have a unique role relative to other sensory afferents because, as a single population, they must convey the richness, complexity, and precision of auditory information as they shape signals transmitted to the brain. To understand better the sophistication of spiral ganglion response properties, we compared somatic whole-cell current-clamp recordings from basal an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 77 3 شماره
صفحات -
تاریخ انتشار 1997